Ni(+) reactions with aminoacetonitrile, a potential prebiological precursor of glycine.

نویسندگان

  • Al Mokhtar Lamsabhi
  • Otilia Mó
  • Manuel Yáñez
  • Jean-Claude Guillemin
  • Violette Haldys
  • Jeanine Tortajada
  • Jean-Yves Salpin
چکیده

The gas-phase reactions between Ni(+) ((2)D(5/2)) and aminoacetonitrile, a molecule of prebiological interest as possible precursor of glycine, have been investigated by means of mass spectrometry techniques. The mass-analyzed ion kinetic energy (MIKE) spectrum reveals that the adduct ions [NC--CH(2)--NH(2), Ni(+)] spontaneously decompose by loosing HCN, H(2), and H(2)CNH, the loss of hydrogen cyanide being clearly dominant. The structures and bonding characteristics of the aminoacetonitrile-Ni(+) complexes as well as the different stationary points of the corresponding potential energy surface (PES) have been theoretically studied by density functional theory (DFT) calculations carried out at B3LYP/6-311G(d,p) level. A cyclic intermediate, in which Ni(+) is bisligated to the cyano and the amino group, plays an important role in the unimolecular reactivity of these ions, because it is the precursor for the observed losses of HCN and H(2)CNH. In all mechanisms associated with the loss of H(2), the metal acts as hydrogen carrier favoring the formation of the H(2) molecule. The estimated bond dissociation energy of aminoacetonitrile-Ni(+) complexes (291 kJ mol(-1)) is larger than those measured for other nitrogen bases such as pyridine or pyrimidine and only slightly smaller than that of adenine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of aminoacetonitrile on net photosynthesis, ribulose-1,5-bisphosphate levels, and glycolate pathway intermediates.

The effects of aminoacetonitrile (a competitive inhibitor of glycine oxidation) on net photosynthesis, glycolate pathway intermediates, and ribulose-1,5-bisphosphate (RuBP) levels have been investigated at different O(2) and CO(2) concentrations with soybean (Glycine max)[L] Merr. cv Pioneer 1677) leaf discs floated on 25 millimolar aminoacetonitrile (AAN) for 50 minutes prior to assay.At 2% O(...

متن کامل

Asymmetric synthesis of α-(1-oxoisoindolin-3-yl)glycine: synthetic and mechanistic challenges.

We report herein that the NaOMe-catalyzed reactions between the chiral glycine Schiff base (S)-4 with 2-cyanobenzaldehyde 3a provide for a convenient preparation of the novel α-(1-oxoisoindolin-3-yl)glycine 1 of high pharmaceutical potential. The reactions involve at least eight synthetic steps and can mechanistically be realized only with application of Ni(II) complexes described in this study.

متن کامل

شکافت سه گانه هسته (cf252

Using three cluster model, the ternary fission of (_"98" ^"252" )Cf is studied. We applied collinear and equatorial configurations to study the ternary fission of (_"98" ^"252" )Cf when three fragments are Sn, Ni and Ca. The potential energy of collinear and equatorial configurations is calculated. We calculated the potential energy for odd and even values of A3. Also, we compared the potential...

متن کامل

Regulation of plant glycine decarboxylase by s-nitrosylation and glutathionylation.

Mitochondria play an essential role in nitric oxide (NO) signal transduction in plants. Using the biotin-switch method in conjunction with nano-liquid chromatography and mass spectrometry, we identified 11 candidate proteins that were S-nitrosylated and/or glutathionylated in mitochondria of Arabidopsis (Arabidopsis thaliana) leaves. These included glycine decarboxylase complex (GDC), a key enz...

متن کامل

Photorespiration-induced reduction of ribulose bisphosphate carboxylase activation level.

Leaf photosynthesis and ribulose bisphosphate carboxylase activation level were inhibited in several mutants of the C(3) crucifer Arabidopsis thaliana which possess lesions in the photorespiratory pathway. This inhibition occurred when leaves were illuminated under a photorespiratory atmosphere (50% O(2), 350 microliters per liter CO(2), balance N(2)), but not in nonphotorespiratory conditions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mass spectrometry : JMS

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 2008